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New explicit subgrid stress models are proposed involving the strain rate and rotation
rate tensor, which can account for rotation in a natural way. The new models are
based on the same methodology that leads to the explicit algebraic Reynolds stress
model formulation for Reynolds-averaged Navier–Stokes simulations. One dynamic
model and one non-dynamic model are proposed. The non-dynamic model represents
a computationally efficient subgrid scale (SGS) stress model, whereas the dynamic
model is the most accurate. The models are validated through large eddy simulations
(LESs) of spanwise and streamwise rotating channel flow and are compared with
the standard and dynamic Smagorinsky models. The proposed explicit dependence
on the system rotation improves the description of the mean velocity profiles and
the turbulent kinetic energy at high rotation rates. Comparison with the dynamic
Smagorinsky model shows that not using the eddy-viscosity assumption improves the
description of both the Reynolds stress anisotropy and the SGS stress anisotropy.
LESs of rotating channel flow at Reτ =950 have been carried out as well. These
reveal some significant Reynolds number influences on the turbulence statistics. LESs
of non-rotating turbulent channel flow at Reτ = 950 show that the new explicit model
especially at coarse resolutions significantly better predicts the mean velocity, wall
shear and Reynolds stresses than the dynamic Smagorinsky model, which is probably
the result of a better prediction of the anisotropy of the subgrid dissipation.

1. Introduction
Subgrid scale (SGS) stress models based on the eddy-viscosity assumption, such as

the widely known Smagorinsky model, are popular in large eddy simulations (LESs).
They are simple and robust and are able to provide for a fairly correct amount of
energy dissipation, at least with a dynamic determination of the model constant. A
correct description of the mean energy drain is in many cases sufficient to obtain a
good description of the resolved scales in LES. However, improvements in comparison
with eddy-viscosity models have been reported with various kinds of mixed models,
where the eddy-viscosity term is accompanied with a second term which is not aligned
with the resolved rate of strain. In the mixed-similarity model, originally proposed
by Bardina, Ferziger & Reynolds (1983), the Smagorinsky model is combined with
a scale-similarity term computed using explicit filtering assuming scale invariance
of the SGS stress. Several authors have reported that the mixed-similarity model
is superior to the Smagorinsky model. For example Vreman, Geurts & Kuerten
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(1994) showed that the dynamic mixed-similarity model outperforms the dynamic
Smagorinsky model in LES of a temporal mixing layer. The Clark model (Clark,
Ferziger & Reynolds 1979), or tensor eddy-viscosity model, is a computationally
efficient alternative to the scale-similarity model part. It can be considered to be a
first-order approximation of the scale-similarity model. The models proposed in this
paper depend explicitly on the resolved strain rate and rotation rate tensors and
consist of two terms: an eddy-viscosity term that provides for dissipation of energy
and a nonlinear term that accounts for subgrid stress anisotropy and thereby improves
the description of the individual SGS stresses. In that respect the new explicit models
belong to the group of mixed SGS models.

Explicit algebraic Reynolds stress models (EARSMs), whereby the Reynolds stress
anisotropy is described in terms of the mean strain rate and the mean rotation rate
tensors, are popular in the Reynolds-averaged Navier–Stokes (RANS) community.
A recent example is the EARSM by Wallin & Johansson (2000). It is based on a
modelled transport equation of the Reynolds stresses and on the assumption that the
advection and diffusion of the Reynolds stress anisotropy are negligible. The EARSM
can correctly account for rotation and has been shown to be superior to classical
eddy-viscosity-based models, especially regarding the description of rotating flows.
Explicit SGS stress models for LES based on polynomials of the resolved strain rate
and the resolved rotation rate tensors have been proposed by Lund & Nikov (1992),
Meneveau, Lund & Moin (1992) and Wong (1992). A recent example is the nonlinear
dynamic SGS stress model by Wang & Bergstrom (2005), which consists of three base
tensors and three dynamic coefficients. One of the terms in the model is similar to the
dynamic Smagorinsky model. Wang & Bergstrom (2005) showed that the dynamic
nonlinear model predicts a more realistic tensorial alignment of the SGS stress than
eddy-viscosity models and can provide for backscatter without clipping or averaging
of the dynamic model parameters.

LESs of rotating turbulent flows put high demands on the SGS model. In spanwise
rotating channel flow, rapid rotation can result in an almost laminar flow at the
stabilized side of the channel, as shown by the direct numerical simulations (DNSs;
Kristoffersen & Andersson 1993), implying vanishing SGS stresses. The flow can even
become fully laminar at very rapid rotation rates (Grundestam, Wallin & Johansson
2008). Rotation can also promote growth of fluctuations in a certain direction,
resulting in very anisotropic SGS stresses.

LES of rotating channel flow has been used as a test case for validation of
SGS models in some studies. Lamballais, Métais & Lesieur (1998) validated their
dynamic spectral eddy-viscosity model through LES of spanwise rotating channel
flow. Also Tsubokura et al. (1999) used spanwise rotating channel flow to investigate
the performance of different SGS stress models. Oberlack et al. (2006) performed
DNSs, LESs and RANS simulations of streamwise rotating channel flow and showed
that the dynamic Smagorinsky model did not work very well in that case.

The objective of this study is to develop new models for the SGS stress by applying
the same kind of methodology that leads to the EARSM for RANS mode. A dynamic
model and a computationally more efficient non-dynamic model are proposed. The
idea is that these new models can improve the description of the SGS anisotropy
compared to eddy-viscosity models. Since the new models can include the effect of
system rotation in a natural way they have a particular potential for rotating flows.

In this paper, we validate the explicit SGS models in spanwise rotating turbulent
channel flow, since this is a challenging problem for LES. The SGS stresses become
very anisotropic and a correct description of the SGS stress anisotropy cannot be
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obtained with a simple eddy-viscosity model. Moreover the stabilizing/destabilizing
effects of rotation have to be captured by the SGS model. The SGS model has to
reduce the SGS dissipation at the stabilized side of the channel in order to capture
the physics of the flow. We also validate the model in streamwise rotating channel
flow, which is also a challenging test case for LES, as shown by Oberlack et al. (2006).
LES of non-rotating and rotating channel flows at relatively high Reynolds number
are carried out in order to explore Reynolds number effects on the turbulence and
sensitivity of the LES to grid resolution.

2. Explicit algebraic subgrid stress models
The transport equation for the SGS stress tensor τij = (ũiuj −ũi ũj ), where ˜ denotes

a homogeneous filter operator, can be written in the same way as the transport
equation for the Reynolds stress (see Germano 1992). Analogous to the Reynolds
stress anisotropy tensor we define the SGS stress anisotropy tensor as

aij =
τij

KSGS

− 2

3
δij , (2.1)

where KSGS = (ũiui − ũi ũi)/2 is the SGS kinetic energy. In a non-rotating frame the
transport equation for aij reads

KSGS

Daij

Dt
−

(
∂D

τij

ijk

∂xk

− τij

KSGS

∂D
KSGS

k

∂xk

)
= − τij

KSGS

(P − ε) + Pij − εij + Πij , (2.2)

where

−D
τij

ijk = −( ˜uiujuk − ũi(ũjuk − ũj ũk)− ũj (ũkui − ũkũi)− ũk(ũiuj − ũi ũj )− ũi ũj ũk

+
1

ρ
(p̃ui − p̃ũi)δjk +

1

ρ
(p̃uj − p̃ũj )δik − ν

∂

∂xk

(ũiuj − ũi ũj )) (2.3)

and −D
KSGS

k = −D
τij

iik/2 are the sum of the turbulent and molecular fluxes of the SGS
stress and SGS kinetic energy, respectively. The production of the SGS stress Pij

and the production of SGS kinetic energy P =Pii/2 are known because they can be
expressed in terms of τij and filtered gradients, but the SGS pressure strain Πij and
the SGS dissipation rate tensor εij need to be modelled. These terms read

Pij = −τik

∂ũj

∂xk

− τjk

∂ũi

∂xk

= KSGS

[
−4

3
S̃ij − (aikS̃kj + S̃ikakj ) + (aikΩ̃kj − Ω̃ikakj )

]
, (2.4)

Πij =
2

ρ
(S̃ijp − S̃ij p̃), (2.5)

εij = 2ν

( ˜∂ui

∂xk

∂uj

∂xk

− ∂ũi

∂xk

∂ũj

∂xk

)
, (2.6)

where S̃ij = (∂ũi/∂xj + ∂ũj /∂xi)/2 is the resolved rate of strain; Ω̃ij = (∂ũi/∂xj −
∂ũj /∂xi)/2 is the resolved rotation rate tensor; and p̃ is the resolved pressure.
The corresponding RANS expressions for Pij , Πij and εij are easily obtained by
replacing the filter operator ˜ by an ensemble average and by using the Reynolds
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decomposition u = ũ + u′ and the rule ˜̃uu′ = 0. The latter rule is not valid in LES, i.e.˜̃uu′ �= 0. Consequently, by decomposing the velocity as ui = ũi + u′
i and the pressure

as p = p̃ + p′ the SGS pressure strain can be written as

Πij =
2

ρ
((˜̃pS̃ − p̃S̃) + p̃′S̃ + ˜̃pS ′ + p̃′S ′). (2.7)

In contrast to RANS models there are correlation terms of the type ˜̃Sijp′ in (2.7).
Although the Reynolds axioms are not valid in LES we assume that it is possible
to model the terms Πij and εij using the same modelling approach as in RANS
simulations, i.e. in terms of filtered gradients and τij . We follow the steps of Wallin &
Johansson (2000) and use a slightly modified version of the general linear model by
Launder, Reece & Rodi (1975) for (2.5) and an isotropic model for the dissipation
tensor (2.6). The models read

Πij = −εc1aij + Ksgs

[
3

5
S̃ij +

9c2 + 6

11

(
aikS̃kj + S̃ikakj − 2

3
akmSmkδij

)
+

7c2 − 10

11
(aikΩ̃kj − Ω̃ikakj )

]
, (2.8)

εij = ε
2

3
δij , (2.9)

where c1 is a relaxation coefficient analogous to the Rotta constant; c2 is a model
parameter associated with the rapid part of Πij , i.e. the part of Πij that depends
directly on changes in the resolved velocity gradients; and ε = εii/2. Model (2.8) for
Πij applied here only differs from the original RANS model by the coefficient in front

of S̃ij . We choose a slightly reduced coefficient in order to increase the predicted SGS
anisotropy. The model for the rapid part of Πij is assumed to account for all rapid

terms in (2.7). Also the term p̃′S̃ is rapid in the sense that it directly responds to
changes in the resolved velocity field. The RANS model by Wallin & Johansson (2000)
assumes c2 = 5/9 which is close to the values suggested for RANS simulation. For
the present SGS stress model we apply the same value, c2 = 5/9, which considerably
simplifies the model. Although the model for the rapid part of Πij is very similar to
the RANS version it is a reasonable model for LES. The a priori tests in the Appendix
shows that the model captures the behaviour of the components reasonably well, and
we believe there is no clear reason to construct a more complicated model. The model
parameter c1 is determined in § 5.2 using DNS data for the slow part of Πij .

The derivation of the EARSM (Wallin & Johansson 2000) involves the weak
equilibrium assumption implying that the advection and diffusion of the Reynolds
stress anisotropy are neglected. This can cause problems in regions with strong
inhomogeneity and a low level of turbulence production. Nevertheless, the EARSM
has been successfully applied to shear and rotating flows. In LES the left-hand side
of (2.2) is of course not negligible in a local sense because the advection of aij is
a fluctuating property. However, we expect the weak equilibrium assumption to be
a reasonable approximation with a coarse filter scale, at least in the mean sense.
This assumption allows for an explicit SGS model that can account for rotation in
a natural way and a treatment of the subgrid anisotropy. In addition to the weak
equilibrium assumption we assume P = ε which strongly simplifies the model. This
assumption cannot be made in RANS models, but in § 4 we show that this assumption
is quite reasonable on the subgrid level. By applying the weak equilibrium assumption
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and P = ε we obtain from (2.2)

0 =Pij − εij + Πij . (2.10)

Note that this is an equilibrium assumption different from the weak equilibrium as-
sumption applied in the corresponding RANS model. The models for Πij and εij imply

c1aij = τ ∗
(

−11

15
S̃ij +

4

9
(aikΩkj − Ωikakj )

)
, (2.11)

where τ ∗ = KSGS/ε is the SGS time scale. We solve (2.11) using the ansatz

aij = β1τ
∗S̃ij + β4τ

∗2
(S̃ikΩ̃kj − Ω̃ikS̃kj ), (2.12)

where β1, β2 and β4 are functions of S̃ij and Ω̃ij and the model parameters. The
ansatz is strictly valid only for two-dimensional resolved velocity fields according
to the Cayley–Hamilton theorem, but it represents a reasonable approximation for
several three-dimensional fields as well (Wallin & Johansson 2000). By solving (2.11)
using (2.12) we finally obtain an explicit algebraic model for the SGS stress,

τij = KSGS

(
2

3
δij + β1τ

∗S̃ij + β4τ
∗2

(S̃ikΩ̃kj − Ω̃ikS̃kj )

)
, (2.13)

where β1 and β4 are functions of Ω̃ij and the model parameters as follows:

β1 = −33

20

9c1/4[
(9c1/4)2 − 2IIΩ

] , β4 = −33

20

1[
(9c1/4)2 − 2IIΩ

] , (2.14)

where IIΩ = τ ∗2
Ω̃ikΩ̃ki . (Note that IIΩ � 0.) The unknown quantities that we need

to model are the SGS kinetic energy, KSGS , and the SGS time scale, τ ∗. We will here
derive one dynamic and one non-dynamic model for KSGS and τ ∗, respectively.

2.1. The SGS kinetic energy: dynamic version

We model the SGS kinetic energy in terms of the squared Smagorinsky velocity scale
�|S̃ij |:

KSGS = c�2|S̃ij |2. (2.15)

Here � is the filter scale; |S̃ij | = (2S̃ij S̃ij )
0.5

; and c is a dynamic parameter which is
determined using Germano’s identity,̂̃uiũi − ˆ̃ui

ˆ̃ui = c�̂22 ˆ̃Sij
ˆ̃Sij − c�22 ˜̂Sij S̃ij , (2.16)

where ̂ denotes an explicit test filter with the filter width �̂. Note that this equation
is not over-determined as is the case of the dynamic Smagorinsky model. Hence,
the number of filter operations needed to obtain the dynamic constant is smaller.

In the following we denote L = ̂̃uiũi − ˆ̃ui
ˆ̃ui and M = �̂22 ˆ̃Sij

ˆ̃Sij − �22 ˜̂Sij S̃ij . Equation
(2.16) is then given by L = cM . The dynamic constant can be calculated according to
c = 〈L〉/〈M〉, but we have experienced that such determination can become singular
near the wall in high-Reynolds-number channel flow. In this paper we have used
c = 〈LM〉/〈M2〉 and clipping to avoid negative values, which is stable and without
any backscatter. The test filter function is a two-dimensional spectral cutoff filter.

There is no dynamic determination of ε. Instead the time scale of the SGS velocity
field is estimated by

τ ∗ =
KSGS

ε
= c3|S̃ij |−1, (2.17)
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implying that ε is approximated with ε = c−1
3 c�2|S̃ij |3. A constant value of c3

works well for τ ∗ in high-Reynolds-number isotropic turbulence (see Marstorp,
Brethouwer & Johansson 2007), but it is not a good approximation in low-Reynolds-
number inhomogeneous flows involving strong mean velocity gradients. As a remedy
for this problem the parameter c3 is modelled in terms of �, KSGS and |S̃ij |:

c3 = c′
31.5C1.5

√
KSGS

2Cs�|S̃ij |
, (2.18)

where c′
3 is a constant; C is the Kolmogorov constant; and 2Cs�|S̃ij | is a Smagorinsky

type of velocity scale using a constant Cs . The factor 1.5C1.5 is an estimate of the
non-dimensional SGS shear in high-Reynolds-number isotropic turbulence (see Pope
2000), and the ratio

√
KSGS/(2Cs�|S̃ij |) accounts for the deviation from equilibrium

because it naturally decreases as the wall is approached. With the dynamic model for
KSGS above the expression reduces to

τ ∗ = c′
3

1.5C1.5
√

c

2Cs

|S̃ij |−1. (2.19)

By including the dynamic parameter c in the model for c3, the time scale τ ∗ is reduced
near the wall and when there is laminarization.

2.2. The SGS kinetic energy: non-dynamic version

A non-dynamic version of the new explicit algebraic model is desirable as a comple-
ment because any dynamic procedure is computationally expensive and complicated
to implement. Moreover, there are situations in which the dynamic procedure is
inappropriate, i.e. in complex geometries without any homogeneous directions or in
an LES with very coarse resolution in which the test filter scale becomes very large.

The aim is to develop a non-dynamic version of the new model based on a non-
dynamic model for the SGS kinetic energy which can deal with laminarization. Our
model is based on the approximation P = ε, and dimensional analysis leads to

K
3/2
SGS

ε
= Ck�, (2.20)

where Ck is a constant of order one; Ck is not a universal constant and is sometimes
determined using a dynamic procedure (see for example Ghosal et al. 1995). In
this paper we will use a constant and scale-independent Ck in order to obtain an
efficient non-dynamic model for KSGS . To first order, if only the eddy-viscosity part
is considered in (2.13), we have

Pε = −τij S̃ij ε = (−β1)K
2
SGSS̃ij S̃ij . (2.21)

If we now assume that P = ε we get

ε2 = −1

2
β1K

2
SGS |S̃ij |2. (2.22)

The approximation P = ε will later be validated (§ 4). Finally, by inserting ε into
(2.20) we get

KSGS = −1

2
β1C

2
k�

2|S̃ij |2. (2.23)

Although β1 accounts for the influence of system rotation by reducing KSGS in
laminarized regions it does not impose the correct near-wall behaviour for the SGS
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kinetic energy. Additional wall damping is thus needed. In the present LES we apply
standard van Driest near-wall damping of KSGS .

The time scale cannot be modelled using the same strategy as for the dynamic case
because such a model would result in an implicit expression for β1. Instead, we use a
constant c3 for the non-dynamic case,

τ ∗ = c3|S̃ij |−1. (2.24)

2.3. System rotation

In a rotating frame of reference, the system rotation rate vector Ωs
i enters (2.2)

explicitly through two different terms (see Wallin & Johansson 2000). The first term
is a consequence of the transformation of the production term,

Pij = KSGS

[
−4

3
S̃ij − (aikS̃kj + S̃ikakj ) +

(
aik(Ω̃kj + Ωs

kj ) − (Ω̃ik + Ωs
ik)akj

)]
, (2.25)

where Ωs
ij = εjikΩ

s
k is the system rotation tensor. Note that the production term also

appears in the model for Πij − εij . The second term arises from the transformation
of the advection term,

Cadv
ij = KSGS

(
aikΩ

s
kj − Ωs

ikakj

)
. (2.26)

With c2 = 5/9 the transformed production and advection terms can be accounted for
by modifying Ω̃ij into the ‘effective’ rotation rate tensor according to

Ω̃R
ij = Ω̃ij + 13/4εikjΩ

s
k . (2.27)

This is a formal modification that is important to include in order to extend the
model to rotating flows. The system rotation modifies both the amplitude of the
model coefficients β1 and β4 and the anisotropy of the SGS stress through the term
(S̃ikΩ̃

R
kj − Ω̃R

ikS̃kj ) . The factor 13/4 is obtained as a direct consequence of
adding the contributions, associated with system rotation, from the production, the
pressure/strain rate model and the advection of the frame-invariant part of the SGS
stress anisotropy, in (2.10).

The contribution from the advection term is a result of the approximation that
the weak equilibrium assumption is valid in the rotating frame only. This is a good
approximation for RANS models, and it corresponds to the assumption that the
flow is statistically homogeneous in the rotating frame only (see Gatski & Wallin
2004). If the contribution from the advection is neglected, i.e. if the weak equilibrium
assumption is assumed to be valid in the fixed inertial frame of reference only,
we have Ω̃R

ij = Ω̃ij + εikjΩk instead of Ω̃R
ij = Ω̃ij + 13/4εikjΩk . However, we believe

that the latter case, Ω̃R
ij = Ω̃ij + 13/4εikjΩk , is more accurate because the flow is only

approximately homogeneous in the rotating frame. It should be noted that the rotation
contribution discussed here is obtained when the advective derivative operates on the
frame-invariant part of the SGS stress anisotropy tensor only. The contributions from
the frame-dependent parts are not incorporated here. This simplification provides a
way of having the same model form as for the RANS case.

Speziale (1985) investigated the transformation properties of the SGS stress tensor
and found that the SGS force ∂τij /∂xj is frame invariant with respect to system
rotation whereas τij is not. Therefore, he claimed that SGS stress models should satisfy
the frame invariance of the SGS force. If taken into account, this criterion implies
that the modelling approach proposed here is not fully appropriate. More specifically,
in the present case the use of the term proportional to SikΩkj −ΩikSkj leads to a frame
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dependence of the divergence of the SGS stress. In order to address this issue to some
extent, computations of rotating and non-rotating channel flow have been performed
using an SGS stress model that has been extended with the term β4KSGSτ

∗2(ΩikΩkj −
1/3ΩmnΩnmδij ). The corresponding model with constant β4 would fulfil the above
criterium. For the model proposed here, β4 has a spatial dependence, and hence the
criterium is fulfilled only to zeroth order. We still feel that the extended model can
be mentioned shortly here for comparative purposes. Computations indicate that the
extension gives no prediction improvements for rotating channel flow and that it
negatively affects the predictions for the non-rotating case. For instance the centreline
velocity deviates by 10–15 % compared to the original model and DNS. The extended
model will not be subject of further discussion, since this would not contribute to the
present paper.

The divergence invariance criterion of Speziale (1985) has been questioned by other
authors, and nonlinear frame-dependent SGS stress models have been proposed.
Kosović (1997) includes the tensor SikΩkj − ΩikSkj without including any extra
‘corrective’ terms and argues that this is correct. He also reports on ‘a significant
improvement’. Furthermore, it is easy to see that the frame invariance criterion is
as applicable to the Reynolds stresses in RANS simulation as it is to the SGS
stresses in LES. On the other hand, it is possible to formulate an EARSM that is
an exact solution to the underlying transport equation, for some types of rotating
flows (e.g. rotating homogeneous flow), but does not fulfil the divergence criterion
(see for instance Wallin & Johansson 2000; Gatski & Wallin 2004). This illustrates
that the frame invariance principle of Speziale (1985) is not always compatible with
the physics of the transport equation for the stress anisotropy.

In accordance with Speziale (1985) we assume that the filter function does not
depend on the frame of reference. Speziale (1985) showed that this is true only if
the filter function satisfies G(x) = G(|x|). This requirement is satisfied by for example
the isotropic Gaussian filter and the spherical top-hat filter, but it is not satisfied by
for example the spectral cutoff filter. A filter function that does not commute with
the temporal and spatial differential operators introduces a commutation error. This
was studied by Fureby & Tabor (1997) who concluded that the commutation error
for turbulent channel flow at Reτ = 180 was small, in general less than 3 %. For the
purpose of the present study, the assessment of the commutation error is out of scope.
However, with the study of Fureby & Tabor (1997) in mind, we find it reasonable
to believe that the commutation error should have a small effect on the predictions
compared to the effects of using different SGS stress models.

3. Simulations
LESs of spanwise rotating turbulent channel flow at wall friction Reynolds number

Reτ = 180 and a resolution of 32 × 33 × 32 are performed in a box with the dimensions
4πδ × 2δ × 2πδ in the streamwise, wall-normal and spanwise direction respectively. The
code uses spectral representation in the streamwise (x ) and spanwise (z ) directions
and uses a Chebyshev representation in the wall-normal (y) direction (see Chevalier
et al. 2007). The grid spacings in wall units are �x+ = 71, �z+ = 36 and on average
〈�y+〉 = 11. The LES results for the rotating cases are compared to the DNS data of
Grundestam et al. (2008). Their DNS data are represented on 192 × 129 × 160 grid
points and are filtered to 32 × 32 using a spectral cutoff filter in the homogeneous
directions. We have also employed a sharp cutoff filter in Chebyshev space as an
explicit filter in the normal direction, but it is omitted here, since it only had a very



Explicit algebraic subgrid stress models 411

0–0.2–0.4–0.6–0.8–1.0
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

y/δ

�
P
�

/�
ε�

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0–0.5–1.0 0.5 1.0

y/δ

(a) (b)

Figure 1. The ratio 〈P 〉/〈ε〉 according to filtered DNS at various filter scales: (a) Ro+ = 0

and (b) Ro+ = 37. The symbols are as follows: �,
√

�x�z
+

= 50; �,
√

�x�z
+

=25; 	,√
�x�z

+
= 17.

small impact on the filtered DNS data. Because of the explicit filtering the filtered
DNS data are not incompressible. For the turbulence intensities we compare LES and
DNS by adding the mean SGS stresses to the mean resolved stresses. This can be done
with the new model because a model for the SGS kinetic energy is used, but it cannot
be done with traceless models such as the Smagorinsky model (see Winckelmans,
Jeanmart & Carati 2002). For that reason we supply the Smagorinsky model results
with the trace 2KSGS computed from DNS when we compare the intensities. The
channel is rotating about the spanwise axis, and the influence of system rotation can
be measured by the rotation number defined as Ro+ = 2Ωsδ/uτ . In rotating channel
flow the wall friction velocity is defined as

uτ =

√
1

2
(us

τ )
2 +

1

2
(uu

τ )
2, (3.1)

where the us
τ and uu

τ are the wall friction velocities at the stable and unstable sides of
the channel respectively. Rotation numbers (Ro+) from 0 to 110 are considered. For
the non-rotating case we carry out a comparison with the DNS by Schlatter, Stolz &
Kleiser (2004). In addition to LES of spanwise rotation, LES of streamwise rotating
channel flow is performed at Ro+ = 10 using the resolution 48 × 49 × 48 and the same
computational box and Reynolds number as in the previous case. The LES results
were compared to the DNS data by Oberlack et al. (2006).

Finally, LESs of non-rotating channel flow at Reτ = 950 are performed using three
different resolutions: (64 × 96 × 64), (96 × 96 × 96) and (128 × 128 × 128). Also LESs
of spanwise rotating channel flow at Reτ = 950 are performed using the resolution
(128 × 128 × 128). In every case, the LESs are performed in a box with the dimensions
4πδ × 2δ × 2πδ in the streamwise, wall-normal and spanwise direction respectively.

4. Validation of the approximation P = ε and the equilibrium
assumption 0 =Pij + Πij − εij

We have applied the approximation P = ε to derive the new models. To validate
this assumption we have calculated 〈P 〉/〈ε〉 with and without rotation. From figure 1
we see that for the non-rotating case 〈P 〉 = 〈ε〉 is a good approximation away from
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Figure 2. The budget terms (a) 〈P11〉, 〈Π11〉 and 〈ε11〉, and (b) 〈P12〉, 〈Π12〉 and 〈ε12〉 with
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√
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= 25. Production is denoted by the solid line, pressure strain correlation
by the dashed line, dissipation by the dash-dotted line and sum by the dotted line.

the solid walls for a wide range of filter scales. For the rotating case it is not a good
approximation close to the wall (where stabilization occurs) at the stabilized side of
the channel. Even though the approximation P = ε is poor near the wall, we will
later show that the model which uses this approximation gives fairly good a posteriori
predictions.

The approximation P = ε and the weak equilibrium assumption result in (2.10)
which considerably simplifies the SGS model compared to the corresponding RANS
model. Again, we validate this assumption by computing the averaged components
from filtered DNS of turbulent channel flow, i.e.

0 = 〈Pij 〉 + 〈Πij 〉 − 〈εij 〉. (4.1)

Figure 2(a) shows the diagonal streamwise component of (4.1) at the resolution
�+

x = 47 and �+
z =24 which is typical for LES. We can see that the dissipation nearly

cancels the production, whereas the pressure strain term is small. The sum of the
terms is very close to zero except near the wall. The same results apply to the other
diagonal components (results not shown here). The off-diagonal component of (4.1)
is shown in figure 2(b). Here, the pressure strain nearly balances the production
term, whereas the dissipation term is small. Again, the sum of the three terms is
small except near the wall. Thus, the equilibrium assumption 0 = Pij +Πij − εij seems
to be justified for LES except very near the solid walls. However, even though the
equilibrium assumption is not valid near the wall, the dynamic model for the SGS
kinetic energy and the model for c1 impose a correct near-wall behaviour of the eddy
viscosity (see § 5.2).

5. Determination of the model parameters
In this section we validate the models for KSGS and τ ∗ and determine the model

constants Ck and c′
3 using LESs and a priori results. We also evaluate the model

parameter c1 a priori and propose a model for c1.

5.1. The SGS kinetic energy and time scale

Figure 3 shows the modelled mean SGS kinetic energy compared to the SGS kinetic
energy computed from DNS for Ro+ =0 and 37. For Ro+ =0, both the non-dynamic
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model (2.23) with Ck = 0.4 and the dynamic model (2.15) for KSGS capture the
behaviour of 〈KSGS〉 fairly well. For Ro+ = 37, the non-dynamic model is able to
capture the behaviour of 〈KSGS〉 including the laminarization at the stabilized side
of the channel (y/δ ≈ 0.3). However, 〈KSGS〉 is overpredicted close to the wall at the
stabilized side of the channel because of the excessive contribution from the mean
velocity gradient in that region. The dynamic model for KSGS performs better in that
respect and captures the behaviour of 〈KSGS〉 at the stabilized side of the channel
more accurately. Thus, the non-dynamic model for KSGS represents a computationally
efficient model that can capture the laminarization to some extent, whereas the
dynamic model for KSGS is the most accurate.

Figure 4 shows the performance of the dynamic model (2.19) for τ ∗ using c′
3 = 2.5

and Cs =0.10 and the performance of the non-dynamic model (2.24) using c3 = 2.2.
Both models capture the behaviour of the SGS time scale fairly well, but they
overpredict τ ∗ at Ro+ = 0 and underpredict τ ∗ at Ro+ = 37. The dynamic model is
the most accurate because it naturally reduces 〈τ ∗〉 to zero as the wall is approached.
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The model parameter c′
3 is evaluated a priori in figure 5 using Cs = 0.10. The results

show that c′
3 is fairly independent of filter scale. The value c′

3 ≈ 1–2 suggested by the
a priori test is slightly lower than the value c′

3 ≈ 2.5 applied in the LES we carry out
later.

5.2. A priori test of c1

Assuming that the filter operator commutes with the differential operator the Poisson
equation for the subgrid pressure reads

1

ρ

∂2p′

∂xi∂xi

= − ∂2

∂xi∂xj

[(ũi ũj − ˜̃uiũj )+(ũiu
′
j − ˜̃uiu

′
j )+(u′

i ũj −ũ′
i ũj )+(u′

iu
′
j − ũ′

iu
′
j )]. (5.1)

Similar to the RANS case the subgrid pressure p′ involves a rapid part that depends
on the filtered (resolved) gradients and a slow part that only depends on the subgrid
velocity field, i.e. p′ = p′

rapid + p′
slow , where

1

ρ

∂2p′
slow

∂xi∂xi

= − ∂

∂xi

(
∂(u′

iu
′
j − ũ′

iu
′
j )

∂xj

)
. (5.2)

If we solve the Poisson equation for p′
slow we can compute the slow part of the subgrid

pressure strain,

Πslow
ij = ˜p′

slowS ′
ij . (5.3)

The other terms in (2.7) depend on resolved gradients. We determine c1 by applying
the Rotta model Πslow

ij = c1εaij . Since most of the components of Πslow
ij have zero

mean value, we compute c1 a priori by requiring |Πslow
ij | = c1ε|aij |. Using averaging in

homogeneous directions we get

c1 =
〈|Πslow

ij |KSGS 〉
〈ε|τkl − 2

3
KSGS δkl |〉

. (5.4)

In RANS models the Rotta constant cRANS
1 is a parameter that describes the relaxation

rate of the Reynolds stresses towards isotropy. Sjögren & Johansson (2000) showed
that cRANS

1 decreases with the turbulence Reynolds number. In wall-bounded flow the
local turbulence Reynolds number decreases close to the wall. Therefore, a near-wall
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in (5.5): (a) Ro+ = 0 and (b) Ro+ = 37. Th dynamic model is denoted by the dashed line and
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damping of cRANS
1 can be justified, which implies that the return to isotropy becomes

weaker when the wall is approached. In LES we expect a similar behaviour for c1.
We see from figure 6 that c1 is a parameter of order one that depends on the

local flow properties. It becomes smaller when the wall is approached, but it does
not approach zero at the wall. It is also smaller at the stabilized side of the channel
where the flow laminarizes.

To model this behaviour the parameter c1 is described in terms of KSGS , τ ∗, � and
|S̃ij |:

c1 = c′
1

(
KSGS |S̃ij |
1.5C1.5ε

)α1 (
KSGS

4C2
s �

2|S̃ij |2

)α2

, (5.5)

where C is the Kolmogorov constant; α1 and α2 are exponents to be determined from
a priori tests; and c′

1 is supposed to be a scale independent constant of order one.
The factor 1.5C1.5 is an estimate of the non-dimensional SGS shear in high-Reynolds-
number isotropic turbulence (Pope 2000), and 4C2

s �
2|S̃ij |2 is an estimate of the SGS

kinetic energy using the Smagorinsky velocity scale with constant Cs . Thus, model
(5.5) can account for the deviation from local equilibrium. The a priori test in figure 7
using α1 = 0.5, α2 = 1 and Cs = 0.10 shows that c′

1 is fairly independent of filter scale
and attains a value of about c′

1 = 2 in the core region of the non-rotating channel. The
a priori test suggests a higher and more scale-dependent value c′

1 ≈ 6 for the rotating
case. If we apply the present dynamic models for KSGS and KSGS/ε to (5.5) and use
α1 = 0.5 α2 = 1 we obtain

c1 = c′
1

√
c′
3

c1.25

(2Cs)2.5
. (5.6)

As a result, c1 will be scale invariant in high-Reynolds-number isotropic turbulence
and depending on the local flow properties in a case like rotating channel flow.

Because c1 ∼ c1.25 the eddy viscosity shows the desired y+3
near-wall scaling in non-

rotating channel flow (figure 8). In the present LES we use c′
1 = 4.2 because it was

found to give a good a posteriori prediction of the SGS anisotropy.
A non-dynamic model for c1 can be constructed using the same approach as above

using the non-dynamic model (2.23) for KSGS . From the dynamic model for c1 we
see that c1 is nearly proportional to the dynamic coefficient c. Here, we simplify (5.5)
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by applying α1 = 0 and α2 = 1. As a result c1 becomes proportional to the dynamic
coefficient c:

c1 = c′
1

c

(2Cs)2
. (5.7)

By comparing the dynamic and non-dynamic models for the SGS kinetic energy, i.e.
by requiring c�2|S̃ij |2 = −0.5β1C

2
k�

2|S̃ij |2, we can express c in terms of β1 and Ck:

c = −C2
k

2
β1. (5.8)

By combining (2.13), (5.7) and (5.8) we obtain an equation for c1:

c1 = c′
1

C2
k

(2Cs)2
33

40

c1(
c2
1 − 2IIΩ

) . (5.9)

The normalization of IIΩ is done by the SGS time scale, which depends on c

and is thus proportional to c1. By rearranging and using (2.19) and (5.7) we get
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IIΩ = c1(c
′
31.5C1.5)

2
(IIΩ )/(2c′

1IIS). It is now possible to solve (5.9):

c1 = − IIΩ

2 IIS

(c′
31.5C1.5)

2

c′
1

+

√√√√(
IIΩ

2 IIS

(c′
31.5C1.5)

2

c′
1

)2

+ c′
1

33

40

C2
k

(2Cs)2
. (5.10)

Figure 9 shows the predicted c1 using c′
1 = 0.6 and c′

3 = 0.4. Standard van Driest
near-wall damping (1 − exp(−(y+/15))2 is applied because IIΩ/IIS approaches a
finite value at the wall. Similar to the dynamic model for c1 the non-dynamic model
(5.10) predicts an approximately constant value in the core region of the non-rotating
channel and a reduced c1 at the stabilized side of the rotating channel.

6. Validation of the explicit algebraic SGS stress models in rotating channel
flow at Reτ = 180

LESs of spanwise rotating channel flow are performed using six different SGS
models. Four of these models are versions of the new explicit model

τij = KSGS

(
2

3
δij + β1τ

∗S̃ij + β4τ
∗2

(S̃ikΩ̃kj − Ω̃ikS̃kj )

)
, (6.1)

where

β1 = −33

20

9c1/4[
(9c1/4)2 − 2IIΩ

] , β4 = −33

20

1[
(9c1/4)2 − 2IIΩ

] . (6.2)

The explicit model using (6.1) and the dynamic determination (2.15) of KSGS

KSGS = c�2|S̃ij |2

is called hereafter model D. The SGS time scale is modelled using (2.19) with c′
3 = 2.4

and Cs = 0.1, and the model parameter c1 is modelled using (5.7) with c′
1 = 4.2 and

Cs = 0.1. The explicit model using (6.1) and the non-dynamic determination (2.23) of
KSGS:

KSGS = −1

2
β1C

2
k�

2|S̃ij |2,

where Ck = 0.4, is called hereafter model ND. The SGS time scale is computed using
(2.24) with c3 = 2.2, and the model parameter c1 is modelled using the non-dynamic
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Figure 10. Mean velocity profile. (a) Non-dynamic models at Ro+ = 0. (b) Dynamic models
at Ro+ = 0. (c) Non-dynamic models at Ro+ = 37. (d ) Dynamic models at Ro+ = 37. DNS is
denoted by the solid line, models D and ND by the dashed line and models DS and S by the
dotted line.

model (5.10) with Ck = 0.4, c′
1 = 0.6 and c′

3 = 0.4. In addition, we apply two models
which are the same as models D and ND respectively, except that the second
constituent term including β4 in (6.1) is neglected. Therefore, these two models only
take into account the eddy-viscosity part and are called hereafter model DEV and
model NDEV , respectively. Model S is the standard Smagorinsky model with van
Driest wall damping of the model constant C2

s = 0.102(1 − exp(−y+/25))2. Model DS
is the dynamic Smagorinsky model with spectral cutoff test filter and averaging of Cs

in the homogeneous directions.

6.1. Mean velocity

Figure 10 shows the mean velocity profile for Ro+ =0 and 37. Model ND offers
significant improvements over model S with wall damping of Cs . At Ro+ = 0, model S
overpredicts the mean velocity, whereas model ND does not. In the rotating channel
the mean velocity profile has an extended linear range with a slope close to twice the
system rotation. The mean velocity is much large than in the non-rotating case due to
the strong damping of the turbulence at the stabilized side of the channel at this high
rotation rate as will be shown later. The mean velocity profile is very well predicted
by both model DS and model D because the dynamic procedure reduces the SGS
dissipation when laminarization occurs. Model S, however, severely underpredicts
the mean velocity due to excessive SGS energy dissipation at the stabilized side of
the channel. Model ND is better at predicting the reduced SGS dissipation at the
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Figure 11. Mean bulk velocity at various rotation numbers. (a) Non-dynamic models.
(b) Dynamic models. DNS is denoted by the solid line, models D and ND by the dashed line
and models DS and S by the dotted line.

stabilized side of the channel, which improves the mean velocity profile. This is due
to the explicit dependence on the system rotation included in β1, which dampens the
SGS dissipation at the stabilized side of the channel.

Figure 11 shows the mean bulk velocity defined as

U+
b =

1

2δuτ

∫ δ

−δ

〈u〉dy, (6.3)

which depends strongly on the rotation number. According to the DNS by
Grundestam et al. (2008) the mean bulk velocity increases with rotation due to the
damping of the turbulence at the stabilized side of the channel. At high Rob = 2Ωsδ/Ub

the bulk velocity approaches the laminar value, since the turbulence is also suppressed
at the other side of the channel. Because of the included mean gradients a standard
eddy-viscosity model predicts a non-zero eddy viscosity even if the flow is laminar.
Therefore, model S cannot handle the laminarization and strongly underpredicts
U+

b . Model ND performs much better in that respect because it can predict the
laminarization at the destabilized side of the channel to some extent. Especially, at
high rotation rates model ND benefits from the asymptotic behaviour β1, β4 → 0
as Ro+ → ∞. The differences between model DS and model D are small, and both
predict the increase of U+

b with Rob rather well.

6.2. Resolved turbulent kinetic energy and Reynolds stresses

Figure 12 shows the resolved kinetic energy at Ro+ = 0 and 37. There are no major
differences between the model predictions for the non-rotating case. All models
capture the location as well as the magnitude of the near-wall peak in K . This is not
the case at Ro+ = 37 at which there is a very strong damping of the turbulence at
the stabilized side of the channel. The DNS data in figure 12 show that the near-wall
peak in K at Ro+ = 37 at the destabilized side of the channel moves further away
from the wall to y/δ ≈ − 0.65. Model S with wall damping of Cs does not correctly
capture this behaviour (see figure 12). The model predicts a near-wall peak in K

and strongly underpredicts K at both sides of the channel. Model ND gives a better
description of the fluctuations; K peaks at the correct position and the magnitude
of K is in better agreement with DNS. However, model ND overpredicts K near the
wall at the destabilized side of the channel. This is due to the overpredicted SGS
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Figure 12. Turbulent kinetic energy. (a) Non-dynamic models at Ro+ =0. (b) Dynamic models
at Ro+ = 0. (c) Non-dynamic models at Ro+ = 37. (d ) Dynamic models at Ro+ = 37. DNS is
denoted by the solid line, models DS and S by the dotted line, models D and ND by the
dashed line and models DEV and NDEV by the dash-dotted line.

kinetic energy close to the wall (see figure 3). Model DS performs better than model
S but still predicts a spurious near-wall peak in K . Model D remedies the problem
and predicts a peak in K at the right position.

Models DEV and NDEV perform as well as models D and ND do, respectively,
when it comes to the kinetic energy. Hence, the nonlinear term S̃ikΩ̃kj −Ω̃ikS̃kj appears
to have only a very small impact on K . However, it has an impact on the drain of
the resolved enstrophy. This can clearly be seen in the intensity of the streamwise
vorticity component, 〈ωx〉2, shown in figure 13. By comparing models D and DEV we
observe that the nonlinear term significantly increases 〈ωx〉2 near the wall where the
coefficient β4 is large in model D.

Figure 14 shows the Reynolds stresses at Ro+ = 37 according to models DS, D
and DEV . The system rotation enters explicitly the governing equations and enhances
the spanwise and wall-normal fluctuations and reduces the streamwise fluctuations
at the destabilized side of the channel in DNS. At Ro+ = 37, 〈u′u′〉 is the smallest
among the normal stresses, in contrast to the the non-rotating case in which 〈u′u′〉 is
the dominant stress. Model DS overpredicts the near-wall peak in 〈u′u′〉 and 〈w′w′〉
resulting in a spurious near-wall peak in the turbulence kinetic energy (figure 12d ).
Also in the region with an approximately constant mean shear, −0.6 <y < 0, model
DS overpredicts the streamwise fluctuations resulting in a too isotropic Reynolds
stress tensor. Such underprediction of the anisotropy is also obtained with model
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Figure 14. Reynolds stresses at Ro+ = 37: (a) 〈u′u′〉+, (b) 〈v′v′〉+, (c) 〈w′w′〉+ and (d ) 〈u′v′〉+.
DNS is denoted by the solid line, model D by the dashed line, model DEV by the dash-dotted
line and model DS by the dotted line.

DEV . Model D improves the Reynolds stresses by reducing 〈u′u′〉 at the destabilized
side of the channel. Hence, the nonlinear term S̃ikΩ̃kj −Ω̃ikS̃kj improves the description
of the individual Reynolds stresses. At the stable side of the channel the wall-normal
stress is almost completely suppressed according to DNS and all models. The 〈u′v′〉
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Figure 15. (a) Anisotropy ratio of the Reynolds stress and (b) anisotropy ratio of the SGS
stress in rotating channel flow at Ro+ = 37. DNS is denoted by the solid line, model D by the
dashed line, model DS by the dotted line and model DEV by the dash-dotted line.

stress is accurately captured by both model D and model DS, in consistency with the
good prediction of the mean velocity profile.

6.3. Anisotropy of the SGS and the SGS dissipation

Figure 15 shows the anisotropy ratios

IRey =
〈v′v′〉
〈u′u′〉ISGS =

〈τ22〉
〈τ11〉 (6.4)

in the rotating channel where IRey describes the anisotropy of the Reynolds stresses
and ISGS describes the anisotropy of the SGS stresses. DNS shows that the large
scales are more anisotropic than the SGS with a clear dominance of the wall-normal
stress over the streamwise stress at the unstable side of the channel. However, also
the SGSs are strongly anisotropic, since ISGS ≈ 5 in the core region of the destabilized
side of the channel. In figure 15(b) we see that model DS with the trace computed
from DNS and model DEV predict ISGS ≈ 1, i.e. isotropy at the SGS level. Model D
gives a higher SGS anisotropy ISGS ≈ 2.5 at the destabilized side of the channel, which
is in better agreement with DNS. Figure 15(a) shows that also the anisotropy of the
Reynolds stress IRey is better described. The improved prediction of the individual
Reynolds stresses with model D including the nonlinear term are thus due to an
improved description of the anisotropy at the SGS level.

The properties of the SGS dissipation are important in LES. Kang & Meneneau
(2001) investigated the anisotropy of the SGS dissipation tensor τij S̃pq using
experimental data. They found that the Smagorinsky model gives a too isotropic
SGS dissipation tensor, whereas the nonlinear tensor eddy-viscosity model gives a
too anisotropic SGS. Similar to Kang & Meneneau (2001) we compute the SGS
dissipation isotropy ratio as

I22 =
〈(τ22S̃22)

2〉
〈(τ11S̃11)2〉

. (6.5)

We only compute I22 using model D and model DEV . Results for model DS are
omitted because there is no easy way to add the trace 2KSGS to τ

Smag
ij in this case.

Figure 16 shows that the DNS has a highly anisotropic SGS dissipation with I22 > 1
at the destabilized side of the channel and I22 < 1 at the stabilized side. Model DEV
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Figure 16. Anisotropy of the energy transfer to the SGS in rotating channel flow at Ro+ = 37.
DNS is denoted by the solid line, model D by the dashed line and model DEV by the dotted
line.

predicts a too isotropic energy transfer, in agreement with the observations of Kang &
Meneneau (2001). Model D predicts more anisotropy and is in better agreement with
the DNS.

6.4. Tensorial alignment of the SGS stress

The tensorial alignment between the SGS stress and different constituent terms has
been examined by several authors, e.g. Horiuti (2001), Tao, Katz & Meneveau (2002)
and Wang & Bergstrom (2005). We follow the steps by Wang & Bergstrom (2005) and
calculate the averaged angles Λi ∈ [0◦, 90◦] between the eigenvectors of the negative
SGS stress and S̃ij . Any eddy-viscosity model has Λi = 0◦ because of the complete

alignment between the SGS stress tensor and S̃ij . Figure 17 shows the averaged angle
between the eigenvectors of the negative SGS stress, −τij , and the resolved rate of

strain, S̃ij , corresponding to their largest eigenvalues. According to the filtered DNS,
Λ1 is about 60◦ throughout the channel, indicating that the SGS stress is not aligned
with the resolved rate of strain. Model D predicts Λ1 ≈ 15◦, which is an improvement
over model DS which predicts Λ1 = 0. However, the angle suggested by the filtered
DNS, Λ1 = 60◦, is significantly higher. There can be two reasons. The first reason is
that model D only takes into account two constituent terms. A complete description
of −τij would require five terms. The second reason is that the SGS stress computed
from DNS includes stochastic noise which is not present in LES. Stochastic noise will
increase Λi , because it will reduce the alignment between −τij and S̃ij . It is interesting
to note that a random vector with a uniformly distributed direction in the upper
half-sphere has a mean angle of Λ ≈ 60◦ to the vertical direction. This is very close
to the value suggested by DNS.

The angle Λ1 does not change very much with rotation according to the filtered
DNS (see figure 17b). There is only a slight tendency of a larger angle at the stabilized
side of the channel. We obtain a similar but more pronounced increase for LES with
model D (figure 17b).

6.5. Validation in streamwise rotating channel flow

To further investigate the performance of the proposed SGS models we carried out
LES of streamwise rotating channel flow at Ro+ = 10 and Reτ = 180 using model D.
The LES results were compared to the DNS data by Oberlack et al. (2006).
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Figure 17. Mean angle between the eigenvectors of S̃ij and −τij corresponding to the largest
eigenvalues: (a) Ro+ = 0 and (b) Ro+ = 37. DNS is denoted by the solid line, model D by the
dashed line and models DS and S by the dotted line.
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Figure 18. Mean streamwise velocity scaled with uτ . DNS is denoted by the solid line,
model D by the dashed line and model DS by the dash-dotted line.

The streamwise rotating channel flow is a demanding test case for turbulence
models. All Reynolds stress components are non-zero. The 〈u′w′〉 component is not
produced by mean shear but is induced by the rotation. Oberlack et al. (2006) showed
that a common Reynolds stress model predicts a 〈u′w′〉 component with the wrong
sign and cannot capture the reduction of the mean flow rate induced by the rotation.
By comparing figures 10(b) and 18, we see that model DS predicts a reduction of
the mean flow rate, but the mean streamwise velocity is still much higher than in
DNS. Such overprediction of U+ using the dynamic Smagorinsky model was also
observed by Oberlack et al. (2006). Although model D also overpredicts U+ it better
captures the reduction of the mean flow rate by the rotation. The shear stresses
are well predicted by LES as shown by Oberlack et al. (2006), whereas there is less
agreement between LES and DNS for the normal stresses. This is seen in figure 19
which shows the resolved streamwise fluctuations. Both model DS and model D
overpredict 〈u′u′〉+, but model D performs significantly better.
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Model DS Model D

Nx × Ny × Nz �x+ �y+ �z+ Reτ �x+ �y+ �z+ Reτ

64 × 97 × 64 162 17 81 828 181 19 91 922
96 × 97 × 96 115 18 52 875 123 20 61 938

128 × 129 × 128 88 14 44 901 94 15 47 955

Table 1. Numerical parameters of the LES: Nx , Ny and Nz denote the resolution in the
streamwise, wall-normal and spanwise directions, respectively.
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Figure 19. Mean resolved streamwise velocity fluctuations scaled with u2
τ . DNS, solid line;

model D, dashed line; model DS, dash-dotted line.

7. Validation of the explicit algebraic SGS stress model in
high-Reynolds-number channel flow

7.1. Non-rotating channel flow at various resolution

In order to explore the sensitivity of the models to the grid spacing, we have carried
out LES of non-rotating channel flow at Reτ = 950 using different resolutions (see § 3).
In LES with model D we chose to specify a lower bound of 0.28 for the parameter c1

in order to avoid too small values near the wall. This value is of the same order as
the low-Reynolds-number value of the corresponding parameter in the RANS model
developed by Sjögren & Johansson (2000) (see § 5 for a further discussion of this
parameter). In the LES the mass flux was fixed in such a way that the bulk Reynolds
number was the same as in the DNS by del Álamo et al. (2004), in contrast to the
other LES in which the pressure gradient was fixed. Table 1 shows the resolution in
the LES with models D and DS together with the mean value of Reτ . Note that the
resolutions are coarse for LES. The computed value of Reτ , i.e. the wall shear stress,
with model DS is significantly lower than the DNS value. LES with model DS at
the coarsest resolution underpredicts Reτ by about 13 %, whereas the corresponding
value for model D at the same coarse resolution is about 3 %. Hence, LES with
model D give values in much better agreement with DNS.

Figure 20 shows the mean velocity profiles. LES with coarsest resolution
overpredicts the mean velocity profile in the log layer, but the slope is correctly
captured by both models. Model DS predicts a higher normalized mean velocity than
model D. The turbulence kinetic energy profiles at the three different resolutions
are shown in figure 21(a). Here, we add the subgrid kinetic energy to the resolved
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Figure 20. Mean velocity profile. DNS (del Álamo et al. 2004) is denoted by the solid line,
explicit algebraic model D by the dashed lines and model DS by the dotted lines. The arrow
points in the direction of increased resolution.
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Figure 21. (a) Turbulent kinetic energy, (b) 〈u′u′〉+, (c) 〈v′v′〉+ and (d ) 〈w′w′〉+. DNS (del

Álamo et al. 2004) is denoted by the solid line, model D by the dashed lines and model DS by
the dotted lines. The arrow points in the direction of increasing resolution for model D. For
model DS the arrow also indicates the direction of increasing resolution in (a) and (b), but in
(c) and (d ) it increases in the opposite direction.

kinetic energy when we compare the results of model D and the DNS by del Álamo
et al. (2004). It is not possible to apply the same procedure to model DS because it
does not include a model for the individual diagonal SGS stresses (see Winckelmans,
Jeanmart & Carati 2002). Model DS tends to overpredict the near-wall peak in the
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Figure 22. Results from LES with Ro+ = 0 at Reτ = 950. (a) Mean velocity profile.
(b) Turbulent kinetic energy. LES is denoted by the dashed line and DNS by the solid line.

resolved kinetic energy, especially at the lowest resolution. It predicts K̃ >K near the
wall, which is incorrect. Moreover the magnitude of the predicted near-wall peak in
K̃ depends strongly on the resolution. Model D provides for a significantly better and
less filter-scale-dependent description of K .

The diagonal Reynolds stresses are shown in figure 21(b)–(d ). Again we add the
SGS stresses to the resolved Reynolds stresses for the results of model D, whereas the
results of model DS are resolved statistics. Model D gives a good and fairly resolution-
independent prediction of the diagonal Reynolds stresses, whereas model DS clearly
overpredicts the streamwise stress and underpredicts the wall-normal stress. These
differences are likely due to the differences in the anisotropy of the SGS dissipation.
Near the wall we can expect that the SGS dissipation of the streamwise stress is
relatively large, and that of the wall-normal stress is relatively small. Eddy-viscosity
models like model DS predict a too isotropic SGS dissipation tensor leading to a too
weak and a too strong SGS dissipation of the streamwise and the wall-normal stress,
respectively. By including nonlinear terms model D is able to give a better prediction
of the SGS dissipation anisotropy as was shown in figure 16. This probably explains
the overprediction of the resolved stress anisotropy by model DS and better agreement
between model D and the DNS data. The correct prediction of the anisotropy of the
SGS dissipation is apparently especially important in LES with coarse resolutions.
An overprediction of the near-wall peak in the streamwise fluctuations using model
DS also appears in rotating channel flow (see § 6.2).

7.2. Spanwise rotation

To investigate the influence of the Reynolds number on rotating channel flow and
the performance of the SGS modelling at different Reynolds numbers, we carried
out LES at Reτ = 950 and compared the results with DNS at Reτ = 180. LESs were
represented on 128 × 129 × 128 grid points and were performed using model D. For
the non-rotating case we compared the LES results with the DNS by del Álamo et al.
(2004), but there are no DNS data available for the rotating cases.

Figure 22 shows the mean velocity profile and the turbulence kinetic energy for
LES with Ro+ = 0 . The mean velocity and turbulence kinetic energy profiles are
in good agreement with the DNS data from del Álamo et al. (2004) with only a
slight overprediction of K near the wall. These results for Ro+ = 0 show that the
present LES at Reτ = 950 gives an accurate prediction. The mean velocity profile
and the turbulence kinetic energy for Ro+ = 37 are shown in figure 23. Results of
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Figure 23. Results from LES with Ro+ =37 at Reτ =950. (a) Mean velocity profile.
(b) Turbulent kinetic energy. LES is denoted by the solid line and DNS at Reτ = 180 by
the dotted line.
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Figure 24. (a) Normalized mean bulk velocity and (b) normalized local wall friction velocity
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τ /uτ at the stabilized and destabilized side of the channel. DNS at Reτ = 180 is denoted by
� and LES at Reτ = 950 by �.

LES at Reτ = 950 and DNS at Reτ = 180 (Grundestam et al. 2008) are plotted. In
figure 23(a) we see that the region with an approximately constant mean velocity
gradient equal to twice the system rotation is slightly larger in LES than in DNS. The
scaled turbulent kinetic energy is also affected by the increase in Reynolds number.
The fluctuations are more intense at the destabilized side of the channel, and there
is no laminarization in LES at Ro+ =37 at the stable side (figure 23b). Thus, the
increase in Reynolds number seems to delay the laminarization to higher rotation
numbers.

The mean bulk velocity defined in (6.3) is shown as a function Rob in figure 24(a).
Also here the LES results at Reτ = 950 and the DNS results at Reτ = 180 are plotted.
We normalize Ub as follows to enable comparison between the two different Reynolds
numbers:

U ∗
b =

Ub − Unon
b

U lam
b − Unon

b

, (7.1)
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Figure 25. Isosurfaces for λ2 = −1.7: (a) Ro+ = 0 and (b) Ro+ = 37.

where Ulam
b is the bulk velocity for laminar channel flow and Unon

b is the bulk velocity
for non-rotating turbulent channel flow. Figure 24(a) shows that U ∗

b increases more
slowly with increasing Rob at Reτ =950 than at Reτ = 180 according to DNS and
LES. However, from stability arguments (see Grundestam et al. 2008) one should
expect total laminarization to occur at Rob � 3 independent of the Reynolds number.
The variation of the wall friction velocities at both sides of the channel as a function
of Rob is shown in figure 24(b). The LES results at Reτ = 950 are similar to the DNS
results at Reτ =180. However, there is a tendency of a delayed relaxation towards the
laminar value ud,s

τ /uτ =1 for high Rob. Such delayed laminarization was also found
by Alvelius (1999).

Turbulence structures in rotating channel flow have previously been investigated
by Lamballais et al. (1998). They visualized the vortical structures by isosurfaces of
the vorticity field at Reτ ≈ 360. In this paper, we visualize the vortical structures in
our LES at Reτ = 950 using the λ2 visualization method (see Jeong & Hussain 1995).
Figure 25 shows isosurfaces for λ2 = −1.7 at Ro+ = 0 and Ro+ = 37. At Ro+ = 0 we
observe only small near-wall structures, whereas we observe tilted large-scale vortical
structures at Ro+ = 37 located at the unstable side of the channel. The structures are
very elongated, and some of them reach as far as the stable side of the channel. The
local flow conditions at the destabilized side of the channel resemble those of rotating
homogeneous shear flow with a rotation rate corresponding to 2Ωs = ∂U/∂y. It is
interesting to note that Brethouwer (2005) found coherent elongated vortex tubes
in his DNS of rotating homogeneous shear flow at this rotation rate. Lamballais
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et al. (1998) also observed elongated large-scale vortices at the destabilized side of
the channel.

8. Conclusions
New explicit SGS stress models involving both the strain rate and rotation rate

tensors that account for rotation in a natural way are proposed and validated through
LESs of rotating channel flow. Rotating channel flow has proved to be a demanding
test case for LES because it involves laminarized regions and highly anisotropic
fluctuations. The new models are based on the same methodology that leads to the
EARSM formulation for RANS models. Both dynamic and non-dynamic models are
proposed. The non-dynamic model is a computationally efficient SGS model which
outperforms the standard wall-damped Smagorinsky model in rotating channel flow.
The new explicit dynamic model is the most accurate and represents an alternative
to the dynamic Smagorinsky model. The model is computationally less expensive than
the dynamic Smagorinsky model because it involves fewer test filter operations. The
proposed explicit dependence on the system rotation included in both new models
improves the description of the mean velocity profile and the turbulent kinetic energy
at high rotation rates. Comparison with the dynamic Smagorinsky model shows that
the avoidance of the eddy-viscosity assumption improves the description of both
the Reynolds stress anisotropy and the SGS stress anisotropy. LESs of non-rotating
turbulent channel flow at Reτ = 950 show that the new explicit model especially at
coarse resolutions significantly better predicts the mean velocity and the wall shear
stress than the dynamic Smagorinsky model. The simulated Reynolds stresses with
the new model are relatively insensitive to the resolution and agree, even at a coarse
resolution, rather well with the DNS data, which is probably the consequence of the
improved prediction of the anisotropy of the subgrid dissipation.

LESs of spanwise rotating channel flow at Reτ = 950 have also been carried out. The
effects of rotation at higher Reynolds numbers are somewhat shifted to higher rotation
numbers, although complete laminarization should occur for Rob � 3 independent of
the Reynolds number. Elongated large-scale vortical structures were found at the
unstable side of the rotating channel.

We think that the new models have potential for LES of rotating and wall-bounded
flows. Since the new subgrid models have strong similarities with the EARSM they
might also have promising features for detached-eddy simulations.

Fruitful discussions on this topic with Dr Stefan Wallin are gratefully acknowledged.
We also want to thank Dr P. Schlatter for providing the DNS data at Reτ = 180 and
Peter Lenaers and Amin Rasam for carrying out some simulations. The project was
funded by the Swedish Research Council. Computer time was provided by Swedish
National Infrastructure for Computing (SNIC).

Appendix. Pressure-strain modelling
The model for the rapid part of Πij is very similar to its RANS counterpart. It only

differs from the original model in the coefficient in front of S̃ij . In order to investigate
if the model is reasonable we perform an a priori test at �+

x = 47, �+
z = 24 which is a

typical resolution for LES. From figure 26 we can see that the rapid model captures
the behaviour of 〈Π12〉 fairly well and the behaviour of 〈Π11〉 in a qualitative way.
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Figure 26. Validation of the model for the SGS pressure strain, 〈Πij 〉. (a) 〈Π12〉 and
(b) 〈Π11〉. Filtered DNS, solid line; model, dotted line.

Hence, the model is reasonable in the mean sense, and we believe that there is no
clear reason to construct a more complicated model.
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